L’Architecture Hexagonale sur un projet Web + Mobile (Partie 2 sur 5)

Explorons comment la logique métier peut être partagée et gérée efficacement à travers différentes plateformes.

Dans l'article précédent nous avons initialisé notre monorepo, la CI, le framework de test et préparé la structure de notre projet et plus précisément de notre Architecture Hexagonale pour la lib core.

Dans ce nouvel article de la série notre objectif va être de mettre en place l'Architecture Hexagonale et de montrer comment grâce à elle nous allons pouvoir développer et créer de la logique métier sans UI (donc sans ouvrir le navigateur ou l'app mobile). Pour cela nous allons travailler en TDD (Test-Driven Development, vous pouvez voir mon article à ce sujet) et utiliser le feedback des tests.

L'Architecture Hexagonale

La structure cible

Pour rappel, voici la structure que l'on va mettre en place à l'issue de cet article :

- src
    - wallet
       - __ tests __
         - wallet.service.test.ts
       - domain
         - wallet.ts
         - wallet.repository.ts
         - wallet.service.ts
       - infrastructure
         - in-memory-wallet.repository.ts
         - local-storage-wallet.repository.ts
         - mmkv-wallet.repository.ts
       - user-interface
         - wallet.store.ts

Chose promise, chose due ! Nous allons maintenant rentrer dans le détail de chaque fichier, à quoi ils servent et ce qu'ils contient.

Développer en TDD

Lorsqu'on travaille en TDD on commence par le test et ce test va nous guider vers un objectif. Il va nous assurer qu'on suit le bon chemin à l'aide de la boucle de feedback régulière qu'on obtient à l'aide des tests. Pour en savoir plus sur la méthodologie à suivre pour faire du TDD je vous invite à nouveau à lire mon article à ce sujet.

Nous allons commencer par travailler sur l'entité Wallet qui correspond à un portefeuille qui a un solde négatif ou positif (par exemple on peut avoir le portefeuille "Compte Principal Julien" qui a un solde positif de 1000€).

Voici les tests mis en place pour cette entité :

describe('Wallet Service', () => {
	let service: WalletService

	beforeEach(() => {
		const repository = new InMemoryWalletRepository()
		service = new WalletService(repository)
	})

	test('getAll > should retrieve all wallets', async () => {
		const newWallet = { id: '1', name: 'Wallet 1', balance: 0 }

		await service.create(newWallet)
		const retrievedWallets = await service.getAll()

		expect(retrievedWallets).toEqual([newWallet])
	})

	test('get > should retrieve a wallet according to an id', async () => {
		const newWallet = { id: '1', name: 'Wallet 1', balance: 0 }

		await service.create(newWallet)
		const retrievedWallet = await service.get(newWallet.id)

		expect(retrievedWallet).toEqual(newWallet)
	})

	test('create > shoudl create a wallet', async () => {
		const newWallet = { id: '1', name: 'Wallet 1', balance: 0 }

		const createdWallet = await service.create(newWallet)
		const retrievedWallets = await service.getAll()
		const retrievedWallet = await service.get(createdWallet.id)

		expect(createdWallet).toEqual(newWallet)
		expect(retrievedWallets).toEqual([newWallet])
		expect(retrievedWallet).toEqual(newWallet)
	})

	test('update > should update the specified wallet', async () => {
		const newWallet = { id: '1', name: 'Wallet 1', balance: 0 }
		const updatedWallet = { id: '1', name: 'Wallet 1', balance: 100 }

		await service.create(newWallet)
		const retrievedWallet = await service.get(newWallet.id)
		const modifiedWallet = await service.update(updatedWallet)
		const retrievedModifiedWallet = await service.get(modifiedWallet.id)

		expect(retrievedWallet).toEqual(newWallet)
		expect(modifiedWallet).toEqual(updatedWallet)
		expect(retrievedModifiedWallet).toEqual(updatedWallet)
	})

	test('delete > should delete a wallet according to an id', async () => {
		const newWallet = { id: '1', name: 'Wallet 1', balance: 0 }

		await service.create(newWallet)
		const retrievedWallet = await service.get(newWallet.id)
		await service.delete(newWallet.id)
		const retrievedWallets = await service.getAll()

		expect(retrievedWallet).toEqual(newWallet)
		expect(retrievedWallets).toEqual([])
	})
})

On peut comprendre via ces tests que les cas d'utilisations de notre entité sont :

  • getAll, récupération de tous les portefeuilles
  • get, récupération d'un portefeuille en particulier
  • create, création d'un portefeuille
  • update, mise à jour d'un portefeuille
  • delete, suppression d'un portefeuille

Nous allons voir maintenant comme réussir à mettre en place ces tests.

Domain

Nous allons commencé par créer le contenu de la partie Domain. Dans cette partie nous allons retrouver tout ce qui représente le problème à résoudre (problème métier). C'est une partie qui doit être totalement indépendante.

L'entité

Commençons par créer notre entité Wallet correspondant à un portefeuille.

type Wallet = {
	// un identifiant unique (ex: 4d0c2e72-be1a-4e2c-a189-2f321fcdc3a4)
	id: string

	// un nom (ex: Compte Principal Julien)
	name: string

	// un nombre positif ou négatif pour le solde (ex: +1000€)
	balance: number
}


Le repository

Maintenant que notre entité est définie, nous allons définir une interface que l'on appelle également port qui va préciser comment interagir avec cette entité. Nous utilisons ici un modèle de conception d'inversion de dépendances qui nous permet de rester totalement libre sur les outils à utiliser pour respecter cette interface. Nous pourrons très bien implémenté cette interface en utilisant une base de données, une API ou un localStorage par exemple, le domaine s'en fiche.

interface WalletRepository {
	getAll(): Promise<Wallet[]>
	get(walletId: string): Promise<Wallet | undefined>
	create(wallet: Wallet): Promise<Wallet>
	update(wallet: Wallet): Promise<Wallet>
	delete(walletId: string): Promise<void>
}

Le service

Nous avons notre entité et nous savons commencer interagir avec, maintenant nous allons créer un service qui va consumer une implémentation du de notre interface repository (partie suivante dans l'infrastructure).

class WalletService implements WalletRepository {
	constructor(private repository: WalletRepository) {}

	getAll() {
		return this.repository.getAll()
	}

	get(walletId: string) {
		return this.repository.get(walletId)
	}

	create(wallet: Wallet) {
		return this.repository.create(wallet)
	}

	update(wallet: Wallet) {
		return this.repository.update(wallet)
	}

	delete(walletId: string) {
		return this.repository.delete(walletId)
	}
}

Infrastructure

L'infrastructure est composée des différentes implémentations des ports du domaine, on les appelle également Adapters. Ici, nous aurons du code spécifique pour consommer une technologie concrète (une base de données, une API, etc.). C'est une partie qui ne doit dépendre uniquement du domaine.

L'implémentation du repository

Nous allons maintenant voir l'une des implémentation possible de notre WalletRepository. Pour commencer nous allons faire du in-memory, pratique notamment pour la mise en place des premiers tests de nos cas d'utilisations.

class InMemoryWalletRepository implements WalletRepository {
	private wallets: Wallet[] = []

	getAll() {
		return Promise.resolve(this.wallets)
	}

	get(walletId: string) {
		return Promise.resolve(this.wallets.find((wallet) => wallet.id === walletId))
	}

	create(wallet: Wallet) {
		this.wallets.push(wallet)
		return Promise.resolve(wallet)
	}

	update(wallet: Wallet) {
		const index = this.wallets.findIndex((w) => w.id === wallet.id)
		this.wallets[index] = wallet
		return Promise.resolve(wallet)
	}

	delete(walletId: string) {
		const index = this.wallets.findIndex((w) => w.id === walletId)
		this.wallets.splice(index, 1)
		return Promise.resolve()
	}
}

Comment dis précédemment, il s'agit d'une des multiples implémentation possible de notre WalletRepository. Nous pouvons très bien imaginer plus tard mettre en place un LocalStorageWalletRepository ou bien un SupabaseWalletRepostory.

Vous pouvez consulter mon répertoire public de broney sur GitHub pour voir mon implémentation de ces 2 repository et notamment de comment j'ai adapté ma série de test pour garantir leur bon fonctionnement.

User Interface

La partie user interface est composée de tous les adaptateurs qui constituent les points d'entrée de l'application. Les utilisateurs utilisent ces adaptateurs pour pouvoir interagir avec le coeur de l'application. Dans notre cas nous allons régulièrement utiliser des stores en utilisant la libraire Zustand. Il s'agit d'une libraire JS minimaliste pour la gestion d'états (une solution plus complexe serait par exemple Redux).

Voyons voir comment articuler notre store Zustand pour permettre à l'utilisateur d'interagir avec le coeur de l'application.

import { createStore } from 'zustand/vanilla'
import { InMemoryWalletRepository } from '../infrastructure/in-memory-wallet.repository'
import { WalletService } from '../domain/wallet.service'
import { Wallet } from '../domain/wallet'

const repository = new InMemoryWalletRepository()
const service = new WalletService(repository)

type States = {
	wallets: Wallet[]
	currentWallet: Wallet | undefined
}

type Actions = {
	load: () => void
	setCurrentWallet: (wallet: Wallet) => void
	getWallet: (walletId: string) => void
	createWallet: (wallet: Wallet) => void
	updateWallet: (wallet: Wallet) => void
	deleteWallet: (walletId: string) => void
}

export const walletStore = createStore<States & Actions>()((set) => ({
	wallets: [],
	currentWallet: undefined,

	load: async () => {
		const allWallets = await service.getAll()
		set({ wallets: allWallets })
	},

	setCurrentWallet: (wallet) => set({ currentWallet: wallet }),

	getWallet: async (walletId: string) => {
		const wallet = await service.get(walletId)
		set({ currentWallet: wallet })
	},

	createWallet: async (wallet: Wallet) => {
		const newWallet = await service.create(wallet)
		set((state) => ({ wallets: [...state.wallets, newWallet] }))
	},

	updateWallet: async (wallet: Wallet) => {
		const updatedWallet = await service.update(wallet)
		set((state) => ({
			wallets: state.wallets.map((w) => (w.id === updatedWallet.id ? updatedWallet : w)),
			currentWallet: state.currentWallet?.id === updatedWallet.id ? updatedWallet : state.currentWallet,
		}))
	},

	deleteWallet: async (walletId: string) => {
		await service.delete(walletId)
		set((state) => ({
			wallets: state.wallets.filter((w) => w.id !== walletId),
			currentWallet: state.currentWallet?.id === walletId ? undefined : state.currentWallet,
		}))
	},
}))


Avec ce store on remarque qu'on va pouvoir facilement, dans n'importe quel environnement JavaScript, charger, définir, récupérer, créer, mettre à jour et supprimer des portefeuilles, tout en maintenant un état global pour l'ensemble des portefeuilles et du portefeuille courant.

Conclusion

Nous avons maintenant terminé ce deuxième article de cette série sur le développement d'une application web et mobile avec l'Architecture Hexagonale et le partage de la logique métier et des composants UI.

Dans cette deuxième partie nous avons vu comment travailler en TDD et surtout comment écrire de la logique métier sans avoir à ouvrir une quelque interface à l'exception du terminal pour les retours de tests.

Nous avons également eu un aperçu de comment nous allons interagir avec nos applications avec le coeur de l'application, via notre store Zustand. Nous irons plus loin à ce sujet dans le prochain article, la troisième partie : Partager de la logique métier et des composants entre le Web et le Mobile.

Sommaire
Nos autres catégories
Notre newsletter tous les mois :
Je m'abonne
Merci ! C'est dans la boîte :)
Oops! Something went wrong while submitting the form.
Partager sur :
Nos autres catégories
Notre newsletter tous les mois :
Je m'abonne
Merci ! C'est dans la boîte :)
Oops! Something went wrong while submitting the form.
Partager sur :

Nos experts vous parlent
Le décodeur

Trunk Based Development (TBD) vs Gitflow
16/11/2023

Introduction

Aujourd'hui, comment parler de développement logiciel sans parler de Git ? Un bon système de gestion des versions est essentiel pour assurer un flux de travail efficace. Git est l'outil de gestion de versions par excellence et est le plus populaire. Néanmoins, avec Git, il s'est développé différentes stratégies pour structurer et gérer le flux de modifications de la codebase. Parmi toutes ces stratégies, aujourd'hui, deux vont nous intéresser : le Trunk-Based Development (TBD) et Git Flow.

D'un côté on a le TBD, une approche minimaliste qui préconise de travailler directement sur un tronc commun, autrement dit la branche principale. Tandis que Git Flow, lui, propose une structure plus complexe, avec des branches dédiées à des fonctionnalités, des corrections, des versions, etc.

Les deux approches ont des avantages et des inconvénients, leurs propres complexités et simplicités et c'est ce que nous allons voir maintenant.

L'objectif de cet article n'est pas simplement de fournir une explication de ces deux stratégies de gestion des versions, mais plutôt de démontrer pourquoi, dans de nombreux contextes, le TBD peut s'avérer une approche plus optimale que Git Flow.


Git Flow vs Trunk-Based Development

La stratégie Git Flow

Git Flow est une stratégie de gestion de versions populaire qui a été conçue pour aider les équipes à gérer les développements complexes, en tirant parti de la puissance et de la flexibilité des branches Git. Elle propose une structure organisée qui facilite le développement parallèle de différentes fonctionnalités et la gestion des versions.

Organisation

Avec Git Flow on organise nos branches de la manière suivante :

  • main, la branche principale qui représente l'état actuel de la production
  • develop, la branche où se trouve toutes les fonctionnalités, corrections et autres de la prochaine version prévue
  • feature/xxx, les branches créées à partir de develop où se trouve le code d'une fonctionnalité qui sera fusionné avec develop une fois le développement terminé
  • release/xxx, les branches créées à partir de develop où se trouve le code d'une nouvelle version du logiciel, potentiellement affiné avant le déploiement
  • hotfix/xxx, les branches créées à partir de main pour des corrections critiques découvertes en production. Ces branches sont fusionnées dans main dès que le correctif est prêt et sont également fusionnées avec develop pour s'assurer que la correction perdurera dans la codebase

Les problèmes de Git Flow

La force de Git Flow réside dans sa structure qui permet de gérer facilement des tâches parallèles et suivre d'évolution du code à travers le temps.

Cette stratégie entraîne néanmoins un lot d'inconvénients :

  • Complexité - Cette stratégie nécessite beaucoup de manipulation manuelle des branches qui demande une maîtrise totale de Git et de ce processus
  • Intégration continue compliquée - L'intégration continue est plus complexe à mettre en place en raison du développement parallèle sur plusieurs branches
  • Déploiement fréquent coûteux - Le déploiement continus/fréquents n'est pas impossible mais demande beaucoup plus de temps et d'énergie
  • Problèmes de fusion - Le nombre parallèle de branches important entraîne de nombreux problèmes potentiels de merge
  • Revues de code difficiles - La taille des pull requests a tendance à être plus importante avec Git Flow parce qu'elles contiennent des fonctionnalités complètes. La branche de feature a tendance à vivre trop longtemps, nécessitant des fusions fréquentes avec develop ce qui entraîne des retards dans le processus de livraison

La stratégie Trunk-Based Development

La stratégie Trunk-Based Development est une approche bien plus minimaliste dont le but est de simplifier le flux de travail en minimisant la fragmentation du code et en facilitant l'intégration continue. Pour cela on ne va travailler que sur une seule branche principale (main ou trunk) autrement appelé : le tronc commun.

Une seule source de vérité

Avec le TBD, cela signifie donc que toutes les modifications du code sont introduites et fusionnées directement dans la branche principale. Chaque développeur doit donc fusionner régulièrement ses modifications, plusieurs fois par jour. En conséquence, les versions sont gérées directement à partir de la branche principale, chaque développeur est constamment à jour et les problèmes de fusions sont considérablement réduits. Le cycle de développement est plus rapide et alimente l'intégration et le déploiements continus.

Quid des branches ?

Travailler avec l'approche TBD ne signifie pas qu'on a plus du tout de branche en plus de la branche principale. En effet, les branches peuvent encore être utilisées mais elles se doivent d'être de très courte durée et fusionnées dès que le travail est terminé.

Quid des revues de code ?

Quel que soit la stratégie adoptée, le processus de revue de code persiste et demeure une composante essentielle pour assurer la qualité du code qui est fusionné dans le tronc commun. La subtilité entre les deux stratégie est que avec le TBD, les modifications étant fréquemment fusionnées, elles sont généralement plus petites. Et si les modifications s'avèrent importante alors le TBD souhaite mettre en avant la collaboration et demanderait de faire ces modifications en pair ou en mob programming. Enfin, les revues de code se doivent d'être traitées rapidement (dans la demi-journée) et doivent durer que quelques minutes (15 maximum à peu près).

Quid des modifications importantes ?

Le TBD n'empêche pas le développement de fonctionnalités importantes qui demandent donc de lourdes modifications du code. En revanche, cette stratégie va favoriser la collaboration via du pair ou du mob programming mais ce n'est pas la seule solution. Il existe également les Feature Flags.

Un Feature Flag est une technique de développement logiciel permettant de masquer, activer ou désactiver une fonctionnalité dans un environnement de production sans avoir à redéployer le code. Cette technique offre un contrôle en temps réel des fonctionnalités, représente une sécurité contre les problèmes potentiels de nouvelles fonctionnalités et, surtout, permet de travailler sur de nouvelles fonctionnalités directement dans la branche principale sans interrompre le fonctionnement normal de l'application.

Dans le cadre de l'approche TBD, où toutes les modifications sont effectuées directement sur la branche principale, l'utilisation de Feature Flags de fusionner le code pour de nouvelles fonctionnalités qui ne sont pas encore terminées ou testées. La fonctionnalité peut être développée et fusionnée dans le tronc sans être exposée aux utilisateurs jusqu'à ce qu'elle soit prête, où le Feature Flag à ce moment-là, peut être activé.

Le recours à des Feature Flags apporte une flexibilité considérable au processus de développement et constitue une composante essentielle pour atteindre un déploiement continu et un flux de travail efficace dans le TBD.

Mais à quoi ça ressemble concrètement ?

Ce sont ni-plus ni-moins des booléens :

Et à l'usage, par exemple pour du React mais le principe est le même pour n'importe quel environnement :

Il est tout à fait possible de mettre en place un système de Feature Flags contrôlable à distance via un backoffice ou des outils tout prêt à l'usage qui existe sur le marché comme Firebase Remote Config, PostHog ou Harness par exemple.

Pré-requis

Pour une implémentation efficace du TBD, plusieurs éléments sont généralement requis :

  • Intégration Continue (CI) : c'est une stratégie qui bénéficie grandement de l'utilisation de la CI étant donné quelle est souvent sollicité pour de petites modifications. La CI permet d'assurer que le tronc commun est toujours en état de fonctionner correctement et qu'elle continue à être deployable à tout moment.
  • Tests automatisés : les tests automatisés vont de pair avec la CI, ils assurent, si ils sont correctement mis en place, de la qualité du code.
  • Revues de code : comme mentionné précédemment, les revues de code sont une composante essentielle pour maintenir la qualité et le partage de connaissance.
  • Feature flag : comme expliqué précédemment, il est important de savoir mettre en place les features flag parce qu'ils sont souvent utilisés.
  • Culture de la collaboration : enfin, l'environnement de travail est très important, toute l'équipe doit être impliqué, connaître et appliquer ce processus. L'équipe doit également se responsabiliser et doit être prête à collaborer étroitement et à partager ses connaissances.

Résumons les bénéfices

Maintenant que nous avons expliqué le TBD comment il fonctionne et dans quel contexte, nous pouvons en ressortir les bénéfices suivants :

  • Intégration continue (CI) : grâce à l'intégration fréquente de petits changements, les problèmes sont détectés et résolus plus rapidement. De plus, cela limite les éventuels conflits de fusion.
  • Déploiements plus rapides : avec une seule branche principale toujours prête à être déployée, le TBD peut faciliter des déploiements plus rapides et plus réguliers.
  • Simplification du processus : la stratégie TBD supprime la nécessité de gérer de nombreuses branches à long terme, simplifiant le flux de travail de l'équipe.
  • Qualité du code : les revues de code régulières contribuent à maintenir la qualité du code et à anticiper les problèmes.
  • Flexibilité grâce aux Feature Flags : l'utilisation de Feature Flags permet de tester de nouvelles fonctionnalités en production sans les exposer aux utilisateurs finaux, contribuant à un lancement plus sûr et contrôlé des nouveautés.

Un dernier bénéfice que nous allons voir en détail dans le dernier point de cet article, c'est la facilité avec laquelle le TBD favorise l'atteinte de performances élevées selon les métriques DORA, un ensemble de mesures reconnues pour évaluer l'efficacité des équipes.

Et les inconvénients dans tout ça ?

La mise en œuvre de la stratégie TBD présente également certains défis ou inconvénients :

  • Gestion rigoureuses des fusions : les modifications doivent être fusionnées en continu dans le tronc commun, ce qui nécessite que les développeurs synchronisent fréquemment leur travail avec la branche principale pour éviter les conflits de fusion.
  • Culture : pour certaines équipes, l'adoption de cette stratégie peut nécessiter un changement significatif dans leurs pratiques de travail, notamment l'intégration continue et les revues de code constantes.
  • Déploiements risqués sans tests adéquats : sans une couverture de test adéquate, le risque d'introduction de bugs en production peut être plus élevé, car tout le code est fusionné directement dans la branche principale qui est déployée.
  • Complexité des Feature Flags : bien que les Feature Flags offrent plus de flexibilité, leur gestion peut ajouter une certaine complexité. Une mauvaise utilisation des feature flags peut entraîner de la dette technique.

En dépit de ces défis/inconvénients, il est globalement reconnu que les avantages valent les efforts nécessaires pour mettre en œuvre le TBD. Comme pour beaucoup de choses de la vie, il est important de déterminer si cette stratégie est adaptée au contexte spécifique de votre équipe et de votre projet.

DORA Metrics et Trunk-Based Development

Les DORA Metrics (ou DevOps Research and Assessment metrics), sont une série de mesures de performance pour les équipes de développement logiciel.

Ces mesures incluent :

  • Le temps de cycle de déploiement (Mean Lead Time for Changes - MLTC) : Le temps moyen nécessaire pour qu'un commit passe à la production.
  • La fréquence de déploiement (Deployment Frequency - DF) : À quelle fréquence une organisation déploie du code en production.
  • Le temps de rétablissement (Mean Time to Restore - MTTR) : Le temps nécessaire pour récupérer d'une panne ou d'un incident de production.
  • Le taux d'échec des modifications (Change Failure Rate - CFR) : La proportion de déploiements causant un incident de production ou un échec de service.

Le TBD est lié aux DORA Metrics car c'est une méthode de développement qui peut potentiellement améliorer ces mesures. Il encourage des cycles d'intégration et de déploiement plus courts, ce qui peut accélérer le délai de déploiement et augmenter la fréquence de déploiement.

  • MLTC et DF : La fusion fréquente de petites modifications permet de réduire le temps de cycle de déploiement et d'augmenter la fréquence de déploiement, car la branche principale est toujours dans un état deployable.
  • CFR : Avec des revues de code régulières et des tests automatisés, on peut s'attendre à ce que le pourcentage de modifications ratées diminue, car les problèmes sont souvent découverts et corrigés avant le déploiement.
  • MTTR : Comme les problèmes sont généralement plus petits et plus localisés avec cette approche, il est généralement possible de corriger et de restaurer le service plus rapidement.

En résumé, l’approche Trunk-Based Development est bien alignée avec l’amélioration des métriques DORA, ce qui en fait une stratégie de choix pour les équipes axées sur le DevOps.

Ainsi, le développement basé sur la stratégie TBD peut contribuer à l'amélioration des DORA metrics.

Le mot de la fin

Cet article a examiné en profondeur la stratégie de Trunk-Based Development (TBD) en la comparant à Git Flow et en mettant en avant ses nombreux avantages. Nous avons analysé comment le TBD favorise des cycles de développement plus rapides, une meilleure qualité de code grâce aux revues de code constantes, et une plus grande flexibilité par l'utilisation de feature flags. Nous avons également expliqué comment le TBD facilite l'atteinte de performances élevées selon les DORA Metrics.


Cependant, nous avons également souligné que le TBD n'est pas sans défis. Il nécessite une gestion rigoureuse des fusions, un changement culturel significatif dans certaines équipes, une bonne couverture de tests pour minimiser les risques associés au déploiement constant.

Pour conclure, le TBD est un modèle puissant qui peut accélérer la livraison de valeur, améliorer la qualité du code et favoriser l'optimisation continue des performances de l'équipe. Cependant, comme pour toute stratégie, son adoption doit être précédée d’une évaluation approfondie des besoins, contextes et capacités spécifiques de l’équipe.

Les dédicaces

Systèmes d'exploitation pour smartphone iOS et Android
14/9/2023

À l’heure du tout numérique et de l’utilisation massive des smartphones, on compte pas moins de 485 000 nouveaux téléchargements d’applications mobile par minute. Le développement de ces applications représente ainsi un excellent moyen pour les entreprises pour promouvoir leurs produits ou proposer des fonctionnalités innovantes. 

Dans ce domaine hautement concurrentiel, deux acteurs majeurs ont su tirer leur épingle du jeu entre le milieu des années 2000 et aujourd’hui. Ils dominent désormais le marché mondial du smartphone.

Ces deux géants très populaires font partie des GAFAM. En effet, il s’agit de la société Apple et son système d’exploitation (ou OS pour Operating System) pour smartphone « iOS » et Google avec son OS mobile Android.

Avec des utilisateurs divisés entre ces deux systèmes d’exploitation, il est crucial, pour les développeurs, de déterminer sous quel OS faire tourner leur future solution mobile.

Dans cet article, nous explorerons les langages natifs permettant de développer une application dédiée au système d’exploitation smartphone de son choix. Ensuite, nous nous concentrerons sur le développement multi-plateforme (ou cross-platform), avec l’utilisation de frameworks comme React Native.

iOS et Android : les titans du système d'exploitation smartphone

En 2007, Apple et son système d'exploitation pour iPhone (ou iOS) redéfinissent le monde des smartphones.

Conçu exclusivement pour les mobiles de la marque à la pomme, cet OS est optimisé pour offrir une expérience utilisateur fluide et graphiquement homogène.

Par ailleurs, l'App Store, qui héberge les applications pour iOS, est un environnement strictement contrôlé, garantissant aux utilisateurs une certaine sécurité et qualité.

Notez que la publication d’applications iOS sur ce magasin en ligne nécessite un compte « Apple Developer » à $99 par an. L’environnement de développement (ou IDE) Xcode, logiciel exclusif aux ordinateurs portables et fixes de Apple est également un prérequis à la publication d’application iOS.

De son côté, le système d'exploitation Android, développé par Google, est aujourd’hui le cœur de nombreux smartphones et tablettes.

En étant open source et basé sur le noyau Linux, Android offre une grande flexibilité aux fabricants et aux développeurs.

En outre, le Google Play Store, magasin phare de l’OS, abrite une myriade d'applications mobiles, des plus utiles aux plus innovantes. 

Pour être reconnu par Google en qualité de développeur Android à vie, il suffit de payer $25 et ainsi pouvoir publier des jeux et applications depuis la Google Play Console.

Les langages de natifs iOS et Android

Vous l’aurez compris, pour toucher un maximum d’utilisateurs, les développeurs doivent créer des applications mobiles fonctionnant à la fois sur iOS et Android.

Pour autant, chaque système d’exploitation requiert l’utilisation du langage de programmation natif associé. Chaque langage demandant une expertise et un temps de développement dédié, les coûts et les ressources sont bien souvent doublés.

Côté iOS, c’est Swift le langage natif officiel développé en 2014 par Apple pour la création d’applications mobiles. Il est puissant, intuitif et conçu pour être efficace tout en étant facile à lire et à écrire. Swift s’inspire d’ailleurs beaucoup du langage Objective C, créé en 1980, qui était auparavant utilisé par les développeurs iOS.

Swift demande néanmoins aux développeurs d’applications iOS d’utiliser l’environnement de développement Xcode, exclusif aux ordinateurs fixes et portables commercialisés par la marque à la pomme. Même si l’installation de machines virtuelle Mac OS est envisageable sous Windows ou Linux, cette seule contrainte a déjà refroidie de nombreuses entreprises et développeurs. Pour créer une application iOS, c’est vers des agences de développement spécialisées dans cette technologie que beaucoup se tournent.

Pour Android, c’est le langage Kotlin qui a rapidement gagné en popularité comme la solution de prédilection pour le développement d’application Android. Kotlin est développé et maintenu par Google depuis 2011. Anciennement, c’était le langage Java, créé en 1995, qui était utilisé par les développeurs Android.

Enfin, c’est l’environnement de développement Android Studio qui est majoritairement utilisé par les développeurs Android pour compiler leurs applications mobiles.

L'avènement du développement cross-platform

Les langages natifs nécessitent alors une de doubles expertises pour les développeurs. Il est également souhaitable d’éviter d’avoir à écrire du code source deux fois afin de réduire les coûts et temps de développement. C’est dans ce contexte complexe que des solutions cross-platform ont commencé à émerger dès la fin des années 2000.

En effet, le framework JavaScript React Native, développé par Meta (anciennement Facebook) en 2015, permet de construire une application fonctionnant sur iOS et Android.

C'est une aubaine pour les développeurs puisque React Native et les solutions similaires induisent ainsi plusieurs avantages notables :

  • Des temps de développement réduit,
  • Des ressources nécessaires moindres,
  • Une mise à jour synchronisée pour les deux systèmes d’exploitation.

React Native fait aujourd’hui partie des technologies cross-platform les plus populaires au monde mais il en existe d’autres tout aussi pertinentes. Il faudra surtout connaître ses besoins et ses prérequis techniques avant de faire un choix. En voici une sélection :

  • Apache Cordova développé en 2011 et écrit en JavaScript,
  • Xamarin développé en 2013 et écrit en C#,
  • Ionic développé en 2013 et écrit en JavaScript 
  • Flutter développé en 2017 et écrit en Dart.

Pour vous démontrer l’intérêt majeur d’une telle technologie, découvrons ensemble quelques exemples basiques de code source.

Le langage Swift pour iOS

Dans cet exemple de code Swift, nous créons une simple interface utilisateur avec un message de bienvenue.

Néanmoins, si nous souhaitons que notre application mobile, aussi basique soit-elle, puisse tourner également sur un téléphone Android, il nous faut développer la même chose à l’aide du langage natif Kotlin.

Le langage Kotlin pour Android 

Dans cet exemple de code Kotlin, nous affichons encore un message de bienvenue. Autrement dit, nous réalisons un traitement purement similaire à celui développé plus haut. 

Heureusement pour nous, une solution cross-platform, comme React Native, demande un code source unique, pour obtenir un rendu similaire sur les deux systèmes OS.

Remarque : Notez que, comme son nom l’indique, React Native est un framework dérivé de la librairie web frontend React. Ces deux technologies utilisent l’extension syntaxique au langage JavaScript « JSX », également développée par Meta.

Le framework React Native pour le développement cross-platform

Dans cet exemple de code React Native, nous utilisons des composants de base pour créer une interface qui fonctionne à la fois sur les systèmes iOS et Android. C'est la magie du cross-platform : un seul code qui existe, s'adapte et évolue sur plusieurs systèmes d'exploitation simultanément !

Ces exemples de code démontrent la différence entre le développement natif et le développement cross-platform.

Les codes natifs Swift et Kotlin nécessitent une connaissance spécifique de chaque plateforme. De son côté, React Native, grâce à sa nature cross-platform, simplifie le processus. Les développeurs peuvent alors utiliser une base de code pour les deux plateformes sans être expert avec d’autres langages que le JavaScript utilisé par React Native.

Avantages et limites du cross-platform

Malgré une promesse alléchante qui semble rendre obsolète les langages natifs, les solutions cross-platform présentent quelques inconvénients non négligeables.

  • Des performances moindres : Les applications natives ont généralement de meilleures performances car elles sont spécifiquement optimisées pour leur OS respectif.
  • Des fonctionnalités spécifiques non disponibles : Certaines fonctionnalités natives peuvent parfois ne pas être facilement accessibles. Elles peuvent même nécessiter des solutions de contournement lorsque l’on développe à l’aide d’une solution cross-platform comme React Native.

Pour illustrer ce dernier aspect, découvrons une implémentation basique consistant à donner à l’application mobile l’accès à une fonctionnalité matérielle spécifique. En l’occurrence, nous avons choisi de nous concentrer sur le moteur de vibration du smartphone. 

Le code source Swift

Une image contenant texte, capture d’écranDescription générée automatiquement

Cet exemple de code permet de faire vibrer un iPhone grâce à l'API native d'iOS qui permet d’accéder facilement et avec précision au moteur de vibration. 

Le code source Kotlin

Une image contenant texte, capture d’écranDescription générée automatiquement

Là encore, avec l'API native d'Android, on utilise le service de vibration avec des motifs de vibration plus ou moins complexes.

Le code source React Native

Une image contenant texte, capture d’écran, Police, carte de visiteDescription générée automatiquement

Comme vous pouvez le constater, avec React Native, le moteur de vibration reste accessible pour les deux systèmes d’exploitation mais il est moins flexible en termes de fonctionnalités avancées, comme la définition de motifs complexes.

Bien que React Native offre la possibilité d’accéder aux fonctionnalités matérielles du smartphone comme pour le faire vibrer, ces exemples de code démontrent que les options et la précision sont plus limitées en comparaison avec les APIs natives de Swift et Kotlin.

Dans le cadre de cas concrets spécifiques plus avancés, l’interaction avec des fonctionnalités matérielles plus évoluées pourrait nécessiter un développement natif.

C'est pour ces problématiques spécifiques ou avancées que le développement natif offre davantage de flexibilité et de performance. Notez néanmoins que pour la majorité des besoins courants des applications, React Native offre un réel équilibre entre portabilité, temps de développement et performance.

Pour conclure, les systèmes d’exploitation pour smartphone jouent un rôle crucial dans l’ère numérique actuelle. Dans les faits, le choix entre le développement natif et cross-platform doit surtout dépendre du projet à mener et des objectifs qui lui sont associés.

Pour autant, gardez à l’esprit qu’avec des technologies comme React Native, les frontières entre iOS et Android s'amenuisent. Ces puissantes solutions offrent aux développeurs et aux utilisateurs une expérience plus simple et accessible. Par ailleurs, les prérequis techniques et fonctionnels étant également amoindris, une plus vaste communauté peut s’adonner à la création d’application mobile.

Enfin, si cet article vous a motivé à construire votre propre solution pour smartphone iOS et Android, découvrez aussi nos conseils pour créer une application de A à Z ainsi que nos 10 astuces pour créer la meilleure application mobile !

Le multi-tenant, un indispensable pour une solution SaaS
23/12/2023

Lorsque l’on développe une solution SaaS, il est nécessaire de bien penser son architecture, surtout si à l’avenir vous réfléchissez déjà à faire découpler plusieurs instances de celle-ci.

Pour imager, prenons pour exemple un site e-commerce.

Vous pouvez faire le choix de partir sur une architecture simple pour votre MVP, avec tout simplement votre boutique à Paris, mais dès lors où le besoin d’avoir plusieurs boutiques se présente, plusieurs questions vont venir à vous.

Ces questions pourraient concerner :

La gestion du stock : est-elle centralisée ? Y-a-t’il un stock par boutique ?

La gestion des produits : est-ce que chaque boutique est indépendante, est-ce qu’elle a ses propres produits ?

La gestion des utilisateurs : est-ce que je stocke les données utilisateurs par boutique ? Est-ce que j’ai une base commune d’utilisateurs ?

Toutes vos réponses vont impacter la façon dont vous allez mettre en place le multi-tenant.

Le multi-tenant

Vous l’avez compris, on parle de multi-tenant lorsque l’on doit gérer plusieurs contextes dans une application, si l’on devait reprendre notre exemple précédent on considèrerait chaque boutique comme un contexte.

Architecture single-tenant vs multi-tenant

Gestion en single-database

La gestion du multi-tenant au moyen d'une seule base de données présente plusieurs avantages significatifs.

Architecture multi-tenant single-database

Tout d'abord, elle simplifie considérablement la maintenance car il n'y a qu'une seule base a gérer en cas de bugs ou de restauration des backups.

De plus, la base de données demeure relativement simple à gérer avec l'utilisation d'un champ tenant_id (store_id) pour distinguer les différents tenants.

Cela offre un avantage financier car il n'y a pas de surcoût au niveau de l'infrastructure.

L'approche du multi-tenant avec une seule base de données comporte également certains inconvénients notables.

Dans le cas de l'utilisation d'un Framework PHP tel que Laravel ou Symfony par exemple, l'adaptation des packages de la communauté ainsi que des requêtes SQL est nécessaire, ce qui peut entraîner des coûts de développements supplémentaires.

En effet, il faudra ajouter un critère à chaque requête pour spécifier le bon tenant à utiliser, un oubli entraînerait des conséquences assez importantes.

De plus, la centralisation des données peut rendre la restauration de données complexe si on a besoin de restaurer les données pour un tenant précis.

Gestion en single-database multi-schema

Une alternative possible dans l'implémentation du multi-tenant consiste à attribuer à chaque tenant ses propres tables au sein de la base de données.

Architecture multi-tenant multi-schema

Cette approche offre une isolation accrue et la gestion des données s'en retrouve simplifiée. Tout comme pour l'implémentation précédente, la restauration des données reste simple. En adoptant cette approche, on ajoute donc une séparation des données de tenants.

Cependant, cette approche présente également quelques inconvénients.

La nécessité de restaurer un tenant spécifique peut être plus compliquée, car il faut sélectionner individuellement chacune des tables lors du backup ou lors de la restauration.

De plus, à mesure que le nombre de tenants augmente, le nombre de tables associées peut devenir considérable, ce qui risque de compliquer la gestion à long terme.

Si des modifications sont apportées à la structure d'une table, chaque table dupliquée pour chaque tenant doit être mise à jour individuellement.

Cela rend également la gestion des migrations compliquées avec des frameworks comme Laravel ou Symfony puisqu'ils n'ont pas été prévu à cet effet.

Gestion en multi-database

L'utilisation du multi-tenant avec une base de données spécifique par tenant offre plusieurs avantages.

Architecture multi-tenant multi-database

Une simplicité côté développement, où il suffit de spécifier quel tenant est utilisé sans adaptations complexes de packages ou de requêtes SQL. L'implémentation est donc plus rapide et le code plus facile à maintenir.

Pour le backup et la restauration, il suffit de le faire sur la base de données du tenant.

On peut optimiser les performances en ajustant les ressources allouées à chaque tenant en fonction de ses besoins.

C’est également le schéma idéal si dans un projet chaque tenant correspond à un site client et que ces clients souhaitent une confidentialité et isolation de leur données.

Et pour les désavantages de cette implémentation, on peut avoir plus de serveurs ou plus de base de données à maintenir, il faut avoir quelques bases côté infrastructure pour mettre en place et configurer les environnements et le coût d'infrastructure sera plus conséquent.

Conclusion

Chaque architecture a ses avantages et inconvénients, la décision devra se prendre en fonction de vos besoins, de vos coûts, de l’effectif de votre équipe et de nombreux facteurs qui composeront la pérennité de votre projet.

Sur le Framework Laravel, plusieurs packages existent pour gérer le multi-tenant. Si on devait en opposer deux, le package Laravel Multitenancy de Spatie propose une implémentation simple et légère qu’il faudra agrémenter de “Tasks” selon le mode de gestion que vous allez choisir, tandis que le package Tenancy d’ArchtechX propose plutôt une architecture plus complexe qui répond à un maximum de besoins avec plus d'opinion.

Il est primordial de s’intéresser à chacune des solutions existantes et de créer des POCs avant de se lancer tête baissée dans l’implémentation du multi-tenant.

Et vous ? Lequel de ces packages choisiriez-vous ?

Si vous hésitez encore pas de panique ! Nous étudierons sans doute plus en détails les différences dans un prochain article.

Échangeons
sur votre projet !

Nous contacter

Simulateur

Bienvenue dans le
simulateur d’estimation

Sélectionnez
vos besoins

Sélectionnez un ou plusieurs choix

Définissez les
fonctionnalités

Sélectionnez un ou plusieurs choix

Dernière
étape !

Renseignez votre adresse mail pour recevoir l’estimation !
Obtenez l’estimation
Précédent
Suivant

Bravo ! Vous avez terminé
l’estimation de votre future app !

Vous recevrez dans votre boite mail l’estimation personnalisé. Une estimation vous offre la possibilité de vous projeter dans un budget, vous permettant ainsi de planifier en toute confiance. Néanmoins, chez Yield, nous adoptons une approche agile, prêts à remettre en question et ajuster nos évaluations en fonction de l'évolution de vos besoins et des spécificités de votre projet.
Retour au site
Oops! Something went wrong while submitting the form.