Développer avec le database branching

Découvrez les avantages du database branching pour les développeurs : une approche révolutionnaire inspirée de Git qui améliore la gestion des bases de données dans les environnements de développement.

Le database branching est une approche d’organisation de base de données qui permet de reproduire la dynamique et le fonctionnement des branches Git.

On va alors pouvoir à partir d’une base de données appelé “master” pouvoir dupliquer une “branche” avec un certain nom. Cette nouvelle base de données se vera hériter des données ainsi que des migrations de la branche source.

Les cas d’usages de ce principe sont multiples et variés. Si nous reprenons l’analogie avec Git flow, lorsque vous allez créer une nouvelle branche de feature, vous serez amené à devoir développer puis appliquer une migration de données ou bien tout simplement altérer les données contenues dans cette base. Elle devient à partir de là un bac à sable tout en partant d’un environnement déjà prédéfini.

Grâce à la nouvelle base de données mise en place pour votre feature, vous n’allez impacter aucun environnement de production / staging / dev mis en place et accessible par tous les développeurs.

Votre base de données sera alors unique et éphémère, une fois la feature terminée, celle-ci pourra être supprimée.

Elle peut aussi servir de base de données temporaire pour une démonstration client, alimentée de données bien précises pour cette dite démonstration.

Pour terminer cette introduction, j’ajouterai que le database branching est présent avant tout pour améliorer la “DX” des développeurs au quotidien.

Pourquoi ne pas alors simplement produire une base de données sur ma machine ?

Il est autant possible que l’infrastructure du projet mette à disposition un cluster de base de données sur un serveur ou bien qu’un développeur puisse créer son cluster sur sa machine.

Avec un provisionnement type Docker vous pouvez déployer rapidement une base de données sur votre machine avec un script de seeding permettant d’alimenter cette base en données. Cependant, vous allez perdre une composante essentielle au database branching qui est la synchronisation de la branche Git avec les données.  En effet, si vous êtes plusieurs développeurs à intervertir sur cette feature / environnement, aucune manipulations supplémentaires ne sera à faire lors du passage sur la branche Git. Vous récupérez la base de données déjà préparée par le précédent développeur.

Vous allez aussi avoir la problématique d’espace disponible sur votre machine, si vous travaillez sur plusieurs branches en même temps, cela implique de pouvoir posséder un conteneur d’une base de données unique par branche. Donc, une grande quantité de données en local.

Comment s’intègre le Database branching dans le workflow du développeur

Comme n’importe quel outil s’ajoutant sur une stack d’un projet, le database branching viens complexifier quelques aspects techniques de celui-ci.

Alors, il est nécessaire d’automatiser le maximums d’aspects du database branching afin de ne pas augmenter le nombre de tâches à réaliser par les développeurs lors de la création d’une nouvelle feature.

En laissant certaines tâches manuelles, nous risquons de frustrer nos collègues développeurs. En effet, il est très facile d’oublier d’exécuter  une certaine commande après un changement de branche.

Dans la deuxième partie de l’article nous nous intéresseront à réaliser un environnement de développement fluide avec l’exemple d’une stack web.

Je dirai alors que le database branching idéal est celui qui est complètement transparents pour les développeurs.

Dans la finalité ce principe est plus ou moins une idéologie, le degrés de l’implémentation peut dépendre de l’envergure du projet et du nombre de développeurs.

Tutoriel: Mise en place du database branching sur une stack Typescript, Prisma

Initialisation du projet et de la base de donnée

La première étape de ce tutoriel sera de se munir d’une base de données avec un utilisateur ayant l’autorisation de créer des database supplémentaires.

Voici plusieurs providers proposant ce service:

Actuellement nous utilisons une base de données hébergée Aurora Serverless hébergée sur AWS déployée depuis Terraform avec le module suivant.

Pour la suite de ce tutoriel nous avons choisis d’utiliser une base de données PostgreSQL. Il est aussi tout à fait possible de l’intégrer sur une base de données MongoDB, MySQL, …

Pour passer rapidement sur les étapes d’initialisation du projet TS avec Prisma je vous redirige vers la documentation officielle de Prisma.

Après toutes ces étapes vous devriez avoir dans la racine de votre projet un fichier d’environnement nommé .env qui possède une url de base de données DATABASE_URL.

À présent nous pouvons remplacer cette url par celle de notre base de données  provisionnée un peu plus haut.

DATABASE_URL="postgresql://gabriel:password@db-branching.cluster-xxxxxxx.eu-west-3.rds.amazonaws.com:5432/master?schema=public"

La database pointée (master dans ce cas-là) importe peu, elle sera mise à jour par  la suite automatiquement.

Automatisation du changement de branche

Afin de faciliter le passage sur une nouvelle base de données à chaque changement de branche git, il est possible de créer un hook sur le projet git, qui sera exclusivement lancé lors d'une commande git checkout.

Pour celà nous utiliserons un outil facilitant la création de hook git nommé Husky.

Voici les commandes d’installation que vous pouvez retrouver dans la documentation officielle:

Cette dernière commande va alors créer un script bash dans le dossier suivant.husky/post-checkout.

On ajoutera ces trois lignes de bash permettant de récupérer la branche git lors d’un checkout et de mettre à jour le fichier .env

Et voilà !

Maintenant à chaque changement de branche en local votre .env sera mis à jour automatiquement.

Il est possible d’aller plus loin en ajoutant l’application automatique des migrations de la base données et/ou le seeding de data.

Sommaire
Nos autres catégories
Notre newsletter tous les mois :
Je m'abonne
Merci ! C'est dans la boîte :)
Oops! Something went wrong while submitting the form.
Partager sur :
Nos autres catégories
Notre newsletter tous les mois :
Je m'abonne
Merci ! C'est dans la boîte :)
Oops! Something went wrong while submitting the form.
Partager sur :

Nos experts vous parlent
Le décodeur

L'Architecture hexagonale : Introduction
26/2/2024

Découvrons aujourd’hui l'univers captivant de l'architecture hexagonale. Cette approche du développement d'applications mobiles repose sur des principes fondamentaux, offrant une structure robuste et évolutive. Dans cet article, explorez les bases de l'architecture hexagonale, découvrez des exemples concrets sur GitHub et apprenez à l'intégrer avec Spring Boot. Optimisez votre code, maîtrisez l'inversion des dépendances et transformez votre façon de concevoir des applications mobiles.

Bienvenue dans le futur du développement logiciel !

Qu'est-ce que l'architecture hexagonale ?

L'architecture hexagonale redéfinit la conception des applications mobiles. À la base de cette approche novatrice se trouvent des principes clés, sculptant une structure en forme d'hexagone. Cette méthode se distingue par son agilité, son adaptabilité et son aptitude à créer des applications robustes. Découvrons les fondements de l'architecture hexagonale pour comprendre comment elle redéfinit le développement logiciel.

L'architecture hexagonale transcende les schémas conventionnels de développement logiciel. Imaginons-la comme une vue aérienne de votre application, où un hexagone représente le cœur, le noyau de votre système. Plongeons dans les détails de cette approche novatrice.

Au centre de cette structure, nous trouvons l'hexagone central. C'est le cœur, le noyau où réside la logique métier de votre application. Cet espace défini par l'hexagone représente l'essence même de ce que votre application offre à ses utilisateurs.

Les côtés de l'hexagone représentent les couches périphériques. Chacune de ces couches a un rôle spécifique dans l'interaction de l’application avec le monde extérieur. De la gestion des entrées/sorties à la persistance des données, ces couches entourent le noyau central, mais sans créer de dépendances directes avec lui.

Les interactions entre le cœur et les couches périphériques se font à travers des ports et adaptateurs. Les ports définissent des interfaces au sein du noyau, tandis que les adaptateurs fournissent des implémentations concrètes pour ces interfaces. Cette modularité offre une flexibilité essentielle, permettant à l'application de s'adapter sans altérer sa logique métier.

Enfin, l'inversion des dépendances est le principe qui gouverne l'architecture hexagonale. Plutôt que d'avoir des dépendances directes, le cœur de l'application dépend d'abstractions définies par les ports. Cette inversion crée un environnement flexible permettant des modifications sans impacter la stabilité du système.

Pour comprendre pleinement l'architecture hexagonale, explorons des exemples concrets. 

L'architecture hexagonale ne se contente pas de suivre les sentiers battus du développement logiciel. Imaginez-la comme une vue aérienne de votre application, où un hexagone représente le cœur, le noyau vibrant de votre système. Plongeons dans les détails pour rendre cette approche plus tangible.

Au cœur, l'hexagone central incarne la logique métier de votre application. C'est là que réside l'essence de ce que votre application offre à ses utilisateurs. Autour de ce noyau, les côtés de l'hexagone représentent les couches périphériques. De la gestion des entrées/sorties à la persistance des données, chaque couche a un rôle précis dans l'interaction de l'application avec le monde extérieur.

Exemples concrets

Imaginons une application de gestion de tâches où le cœur de l'hexagone représente la logique de gestion des tâches, des deadlines, etc. Les côtés de l'hexagone pourraient inclure une couche d'interface utilisateur, une couche de persistance des données, et une couche de services externes.

Les interactions entre le cœur et les couches périphériques s'effectuent à travers des ports et adaptateurs. Les ports définissent des interfaces au sein du noyau, tandis que les adaptateurs fournissent des implémentations concrètes pour ces interfaces. Cette modularité offre une flexibilité essentielle, permettant à l'application de s'adapter sans compromettre sa logique métier.

Supposons que le port "GestionTâchesPort" définisse les opérations nécessaires à la gestion des tâches. L'adaptateur "GestionTâchesAdapter" fournirait l'implémentation concrète de ces opérations, interagissant avec la base de données et les services externes.

Enfin, l'inversion des dépendances règne en maître dans l'architecture hexagonale. Plutôt que des dépendances directes, le cœur dépend d'abstractions définies par les ports. Cette inversion crée un environnement souple, permettant des modifications sans secouer la stabilité du système.

Plutôt que d'avoir des dépendances directes vers la base de données, le cœur dépendrait d'interfaces définies dans le port "PersistancePort", laissant les détails d'implémentation à l'adaptateur "PersistanceAdapter".

En résumé, l'architecture hexagonale offre une vision stratégique du développement logiciel. Elle place la logique métier au centre, entourée de couches flexibles facilitant l'interaction avec le monde extérieur. Cette approche, avec son hexagone central et ses principes fondamentaux, ouvre la voie à des applications mobiles robustes, adaptables et pérennes.

Les principes de l'architecture hexagonale

L'architecture hexagonale repose sur des fondements solides, formant une structure en forme d'hexagone pour créer des applications mobiles robustes. Décortiquons les principes clés qui définissent cette approche innovante :

  • L'architecture hexagonale est structurée en couches fondamentales. De la couche d'infrastructure à celle de persistance, chaque strate joue un rôle crucial. Cela offre une organisation claire, favorisant la stabilité et la modularité.
  • Le point d'entrée représente l'accès initial à l'application, tandis que la logique métier dicte son fonctionnement interne. Cette dualité assure une expérience utilisateur fluide, équilibrant l'interaction extérieure avec la logique interne.
  • Fondamentale à l'architecture hexagonale, l'inversion des dépendances renverse les schémas traditionnels. Cette approche permet à l'application de s'adapter aux changements sans compromettre sa stabilité. Elle crée un environnement où la logique métier guide les détails d'implémentation.

Mise en pratique de l'architecture hexagonale

Découvrons comment concrètement mettre en œuvre l'architecture hexagonale dans le développement d'applications mobiles. Plongeons dans des exemples tangibles pour comprendre son impact réel.

Explorez un exemple concret sur GitHub où le code source d'une application est dévoilé. Chaque composant, de la couche d'infrastructure à la couche de persistance, est clairement défini. Visualisez comment ces éléments s'entremêlent pour former une structure cohérente. Cette transparence simplifie le processus de développement, permettant une compréhension facile et une évolution efficace de l'application.

L'intégration pratique de l'architecture hexagonale est facilitée avec Spring Boot. Cette union offre une approche concrète pour développer des applications mobiles robustes. Elle simplifie la gestion des dépendances et maintient la flexibilité, permettant aux développeurs de se concentrer sur la création plutôt que sur des considérations techniques. 

L'architecture hexagonale dans le contexte du Domain-Driven Design

Plongeons dans la synergie puissante entre l'architecture hexagonale et les principes du Domain-Driven Design (DDD), développant ainsi des applications mobiles de plus grande qualité.

L'architecture hexagonale et le Domain-Driven Design (DDD) fusionnent harmonieusement pour définir des modèles de domaine robustes offrant ainsi une approche complète du développement logiciel.

Lorsque nous plongeons l'architecture hexagonale dans le contexte du Domain-Driven Design (DDD), une collaboration symbiotique émerge. Ces deux approches, axées sur la compréhension profonde du domaine métier, se renforcent mutuellement.

1. Collaboration Harmonieuse

Imaginons une application de commerce électronique. Dans l'architecture hexagonale, le cœur de l'hexagone représente la gestion des commandes, des transactions, et des stocks, constituant la logique métier centrale. Dans le contexte du DDD, ces entités deviennent les agrégats du domaine, chacun avec son propre cycle de vie et ses règles métier spécifiques. Ainsi, l'hexagone central et les agrégats du DDD collaborent harmonieusement pour façonner le modèle de domaine.

2. Réflexion sur le Contexte Limité

Poursuivons avec la réflexion sur le contexte limité du DDD. Supposons que notre application de commerce électronique ait également un module de gestion des utilisateurs. Dans l'architecture hexagonale, cela devient une autre zone centrale, avec ses propres ports et adaptateurs. Dans le contexte limité du DDD, ce module représente son propre sous-domaine avec ses règles métier distinctes. Cette approche permet une séparation claire des préoccupations et une meilleure compréhension du modèle de domaine, alignant ainsi l'architecture hexagonale avec les principes du DDD.

3. Alistair Cockburn et les Fondements

Alistair Cockburn, un pionnier du Domain-Driven Design, souligne l'importance de définir des interactions précises entre les entités du domaine. Dans l'architecture hexagonale, cela se traduit par la définition précise des ports et adaptateurs, offrant une interface bien définie pour chaque interaction. Cette synchronicité entre les principes de Cockburn et l'architecture hexagonale garantit une compréhension approfondie du domaine et une mise en œuvre logicielle qui reflète fidèlement la réalité métier.

L'architecture hexagonale et le Domain-Driven Design forment une alliance puissante. En utilisant des exemples concrets, nous avons vu comment ces approches complémentaires collaborent pour créer des modèles de domaine clairs, des contextes limités bien définis, et des applications mobiles riches en fonctionnalités métier.

Nos conseils pratiques et astuces

Explorez des conseils concrets et des astuces judicieuses pour optimiser l'utilisation de l'architecture hexagonale dans le développement d'applications mobiles.

Dans la mise en œuvre de l'architecture hexagonale, privilégiez la clarté. Des noms de classes explicites aux commentaires informatifs, assurez-vous que chaque composant de votre application est compréhensible. La transparence facilite la collaboration et la maintenance à long terme.

Investissez dans des tests unitaires approfondis. L'architecture hexagonale favorise la testabilité, alors profitez-en. Des tests solides garantissent la stabilité de votre application et facilitent l'identification rapide des problèmes potentiels.

Accompagnez votre code d'une documentation complète. Décrivez les choix architecturaux, les interactions clés, et les modèles de domaine. Une documentation détaillée facilite l'intégration de nouveaux membres dans l'équipe et assure une compréhension globale du projet.

Soyez sélectif quant aux dépendances. Limitez-vous aux dépendances nécessaires pour éviter la complexité inutile. Une architecture hexagonale bien conçue privilégie la simplicité, ce qui facilite la maintenance et l'évolutivité.

Adoptez une approche itérative. L'itération continue associée au réajustement est essentielle. Recueillez les retours, identifiez les améliorations possibles, et évoluez constamment. Cette approche flexible s'aligne parfaitement avec les principes de l'architecture hexagonale.

L'architecture hexagonale se révèle comme une approche incontournable pour le développement d'applications mobiles. Avec ses principes solides, sa mise en pratique transparente, et sa synergie avec le Domain-Driven Design, elle offre une solution robuste et flexible.

Priorisez la clarté, investissez dans des tests unitaires approfondis, documentez judicieusement, évitez les dépendances superflues, et adoptez une approche itérative pour un succès continu.

En embrassant l'architecture hexagonale, vous développez des applications mobiles plus résilientes et créez une base pour l'innovation future. Restez agile, apprenez constamment, et évoluez avec votre application.

L'architecture hexagone est le socle sur lequel repose l'avenir du développement logiciel mobile.

Git : initiation, merge vs rebase, démo
22/6/2023

Origine


Git a été inventé et développé par Linus Torvalds en 2005. Il s’agit un logiciel libre et gratuit permettant aux développeurs de gérer les changements apportés au code au fil du temps. Linus Torvalds c’est aussi le petit génie qui est à l’origine du noyau Linux qu’il a commencé en 1991, donc bien avant Git.


Linux c’est un projet plutôt conséquent et il a donc dû nécessiter l’usage d’un outil de gestion de version. Cet outil, à l’époque, c’est BitKeeper. Le problème de BitKeeper, c’est qu’il s’agit d’un logiciel propriétaire et que toute la communauté qui gravite autour de Linux, elle n’aime pas vraiment les logiciels propriétaires. Alors que BitKeeper n’est déjà pas totalement apprécié par la communauté Linux, ils vont faire une annonce qui va déclencher la colère de toute cette communauté et surtout de Linus Torvalds. Ils vont cesser, du jour au lendemain, d’être gratuit. C’est à ce moment précis que Linus Torvalds décide de développer lui même son propre système de gestion de version du code source et tout comme Linux, ce système sera libre et gratuit.


Système de contrôle de version (VCS)


Git est donc un système de contrôle de version, il permet tout simplement de suivre l’évolution du code au fil du temps, à l’aide de branche, de fichiers et d’opérations sur ces fichiers.


Git est structuré comme suit :

  • on y retrouve des fichiers (le code source)
  • des branches (correspondant à une arborescence de fichiers)
  • et des opérations pour faire évoluer les fichiers dans les branches


Grâce à ces opérations, git permet de savoir qui a touché à quel fichier, à quel moment et comment.


GitHub, GitLab, Bitbucket, etc.


Git est un logiciel qui permet de sauvegarder et de gérer localement l’évolution du code source au fil du temps. GitHub, GitLab, Bitbucket, etc. sont des plateformes (web) qui se servent du logiciel git pour gérer le code source. Les dépôts ne sont alors plus gérer localement mais sur des serveurs distants et permettent donc notamment la collaboration avec plusieurs personnes. Ces plateformes proposent également de nombreuses fonctionnalités de gestion de projets et d’équipes (wiki, affectations de tâches, suivi des problèmes, roadmap, statistiques, etc.).

Les bases

Git Flow


Git Flow est une organisation de travail basé sur la capacité de Git à gérer des branches. Par défaut il existe une branche principale qui s’appelle main (anecdote : anciennement master, ce nom par défaut a changé pour des raisons culturelles, ne plus assimiler la notion de master/slave à l’industrie du développement face aux nombreux cas de racisme dans le monde). Il existe une deuxième branche que nous allons créer et qui sera également considérée comme principale, il s’agit de la branche develop.

Nous avons donc 2 branches principales :

  • main (anciennement master), qui représente le code source utilisé sur la production
  • develop, qui contient les dernières fonctionnalités dont la phase de développement est terminée

Tout au long du développement du projet, de nombreuses branches seront créées lors du développement des fonctionnalités et des corrections diverses. Ces branches respecteront des conventions de nommages comme suit :

  • feature/*, pour les branches de fonctionnalités
  • hotfix/* ou bugfix/*, pour les branches de corrections
  • refactor/*, pour améliorer la qualité du code

Conventional Commits


Conventional Commits est une spécification dont le but est d’améliorer la lisibilité des commits et l’historique des modifications du code source. À l’aide de ces conventions on peut identifier immédiatement le type, le contexte et l’objectif des modifications apportées au code sur un commit (nota bene : Cela permet aussi d’être compris par des outils automatisé pour générer de la documentation en autres).

Format Conventional Commits

Les types de commits les plus utilisés sont :

  • feat, développement d’une feature
  • fix, correction d’un bug
  • refactor, amélioration du code
  • test, ajout ou mise à jour de tests
  • chore, tâche technique non assimilée à une feature
  • remove, revert, style, ci, docs, etc.
Exemples de commits suivant la convention

Workflow : merge vs rebase


Avec Git Flow on travaille donc sur des branches partant de develop (ou autre) et une fois le travail terminé on met à jour develop pour qu’il ai connaissance des modifications apportées.

Il existe plusieurs façons de ramener les modifications d’une branche vers une autre. On peut utiliser la politique de merge ou bien la politique de rebase. Ces deux méthodes ont des avantages et des inconvénients.


Politique de merge


Lorsque le travail de développement est terminé sur une branche (de feature, de refactor, etc.), la branche contient un certain nombre d’opération qui n’existent pas sur la branche d’origine. Le principe de la politique de merge est simple : récupérer les modifications faites sur une branche et les ramener sur une autre branche qui n’a pas connaissance de ces modifications. Ces modifications sont ramenées telles quelles.

Avantages :

  • traçabilité totale, l’historique du code source correspond totalement à ce qui a été fait
  • résolution des conflits en une seule fois (peut être un inconvénient dans certains cas)


Inconvénients :

  • historique du code source vite pollué par des opérations inutiles “wip” ou des opérations qui s’annulent
  • historique peu fiable et difficile à debugger
  • résolution des conflits en une seule fois (peut être un avantage dans certains cas)


Politique de rebase


Lorsque le travail de développement est terminé sur une branche (de feature, de refactor, etc.), la branche a donc un certain nombre d’opération qui diverge de la branche principale. Lorsqu’on suit une politique de rebase, notre objectif va être de nettoyer ces opérations en les réécrivant jusqu’à avoir le nombre minimum d’opérations pertinentes.  

Avantages :

  • historique du code source linéaire et lisible qui peut servir de documentation
  • messages de commit clairs et respectant les conventions, plus de “wip”
  • plus de commits qui s’annulent et donc une fiabilité de l’historique
  • facilité pour revenir en arrière et trouver l’origin d’un bug car l’historique n’est pas pollué
  • facilité pour revoir une feature complète, pour la modifier ou l’annuler
  • résolution des conflits opération par opération (peut être un inconvénient dans certains cas)


Inconvénients :

  • demande une grande rigueur car on réécrit en permanence l’historique
  • demande une bonne communication ou des règles précises si on travaille en équipe sur la même branche
  • la réduction d’une nombre d’opération au minimum est parfois trop extrême et atténue la clarté du contexte dans certains cas
  • résolution des conflits opération par opération (peut être un avantage dans certains cas)


Nettoyage avec rebase Interactif


Avec la politique de rebase on réécrit l’historique des opérations faites sur le code source. Pour cela on peut utiliser des outils comme GitKraken ou autre, mais on peut également utiliser la commande git rebase interactive.


Les rebases réécrivent l’historique et donc écrasent totalement ce qui existait avant. En équipe il est donc indispensable de bien communiquer, de bien se mettre à jour et de prendre le soin de ne pas travailler sur la même branche. Si ces règles ne sont pas respecter, les pertes de code sont plus que probables !


Le processus classique de développement pour ne pas rencontrer de problèmes et profiter de la puissance du rebase est le suivant (en plus  :

  • travailler en local en faisant autant d’opérations que nécessaires
  • lorsque le travail est terminé et que tout fonctionne comme il faut, créer une pull request et demander une revue de code en gardant l’historique de code tel qu’il est pour garder du contexte et donner à l’auteur de la revue de code un moyen de comprendre le cheminement de pensé qui a amené à ces modifications
  • une fois la revue de code terminée et acceptée, il faut utiliser le rebase interactive pour nettoyer le code et ne garder que les opérations nécessaires
  • intégrer les modifications sur la branche d’origine et supprimer la branche créée précédemment

🧑💻 Démonstration


Supposons nous avons un dépôt git avec une seule branche main et un seul fichier hello.ts qui contient une fonction “Hello World !” comme suit :

Maintenant, nous devons développer la fonctionnalité “Good Bye World!”.

Pour cela, nous allons donc commencer par créer une branche qui respecte les conventions de nommage : git checkout -b feature/good-bye
Puis, nous allons créer un fichier good-bye.ts et écrire la fonction suivante :

Et nous allons créer un commit contenant cette fonctionnalité : git commit -m “feat: good bye world”.


Vous l’avez peut-être remarqué, une erreur s’est glissée dans la fonction, nous allons donc faire un commit pour la corriger :

Avec le commit suivant : git commit -m “fix(good-bye): typo”.

Nous avons donc 2 commits alors qu’il serait plus pertinent d’en avoir qu’un seul. Nous allons donc utiliser le git rebase interactive pour réécrire l’historique des modifications.

Pour initialiser le rebase interactive on utilise la commande suivante : git rebase interactive HEAD~2

Cette commande va ouvrir l’interface suivante :

Sur cette interface on voit les 2 derniers commits de mon dépôt git (parce qu’on a utilisé HEAD~2). On y retrouve également une documentation des commandes qu’on peut utiliser devant l’identifiant de chaque commit.


Dans notre cas, on veut fusionner les modifications du deuxième commit avec le premier commit. C’est donc la commande fixup qui nous intéresse, nous allons donc remplacer pick devant le commit fix(good-bye): typo par fixup.


On enregistre et on obtient l’historique suivant (un seul commit) :

7f077f4 (HEAD -> feature/good-bye-world) feat: good bye world

Liens utiles

L’Architecture Hexagonale sur un projet Web + Mobile (Partie 1 sur 5)
27/2/2024

Hola, je vais vous présenter le début d'une nouvelle série d'articles dédiées à la construction d'un projet Web et Mobile en mettant à profit l'Architecture Hexagonale. Durant toute cette série, nous allons explorer comment la logique métier peut être partagée et gérée efficacement à travers différentes plateformes.

Nos objectifs

Nous allons avoir plusieurs objectifs à atteindre au fil de ce projet :

  • Apprendre comment développer une application Web et Mobile à la fois en mettant à profit les technologies modernes (Nx, Expo, Remix, Vitest, etc.)
  • Comprendre les principes de l'Architecture Hexagonale et comment l'appliquer pour optimiser le partage de la logique métier
  • Gagner en compétence et en confiance pour lancer votre propre projet multi-plateforme, tout en développant une base de code propre et maintenable

La structure de la série

Comme je l'ai dis au début de ce premier article, ce projet donnera lieu à une série d'articles qui sera structurée de cette manière :

  • Partie 1 (cet article) : présentation du projet et mise en place d'un monorepo avec Nx
  • Partie 2 : développer sans UI avec l'Architecture Hexagonale
  • Partie 3 : partager de la logique métier et des composants entre le Web et le Mobile
  • Partie 4 : refactor serein avec les tests et l'Architecture Hexagonale
  • Partie 5 : déploiement Web et Mobile avec Netlify et EAS

Le projet

Le projet qui va nous aider à mettre en avant l'Architecture Hexagonale est un outil de gestion de budget que l'on appellera broney (le bro qui t'aides à gérer ta money 😎). Cet outil sera composé de deux applications, une première, web, développée avec Remix et une deuxième, mobile, développée avec Expo. Nous aurons donc 2 applications React et React Native avec un package TypeScript qui contiendra la logique métier partagée entre ces 2 applications.

Stack

La Stack que j'ai choisi est très subjective, on y trouve quelques frameworks qui mérite selon moi plus de lumière (Remix notamment et Nx face à NextJS et Turborepo). Néanmoins il est important de comprendre que peu importe les frameworks et libraires utilisées, le coeur de l'application sera complètement agnostique et réutilisable dans n'importe quel contexte.

Fonctionnalités

Pour mettre en avant l'Architecture Hexagonale nous allons avoir besoin de développer quelques fonctionnalités pour avoir de la logique métier. Nous allons nous focus sur les fonctionnalités suivantes :

  • Mettre en place le storage : react native mmkv pour le mobile et localStorage pour le web
  • Gérer les catégories : lister, ajouter, modifier et supprimer
  • Gérer les portefeuilles : lister, ajouter, modifier et supprimer
  • Gérer les transactions d'un compte : lister, ajouter, modifier et supprimer
  • Authentification avec Supabase
  • Dynamiser toute l'app avec Supabase

Modèle de données

Pour mettre en place les fonctionnalités nous allons avoir besoin des entités suivantes :

  • Wallet, un portefeuille qui a un solde négatif ou positif (par exemple on peut avoir le portefeuille "Compte Principal Julien" qui a un solde positif de 1000€)
  • Category, des catégories servant à préciser le contexte des transactions faites (par exemple on a les catégories "Maison", "Restaurants" et "Divertissements")
  • Transaction, les transactions sont liées à un portefeuille et à une catégorie pour savoir où l'argent est transférée (par exemple on a une transaction du portefeuille "Compte Principal Julien" de 50€ sur la catégorie "Restaurants")

Mise en place du monorepo avec NX

Initialisation du projet

Nous allons utiliser les commandes de Nx pour initialiser notre projet.

➜ npx create-nx-workspace@latest

✔ Where would you like to create your workspace? · broney
✔ Which stack do you want to use? · none
✔ Package-based monorepo, integrated monorepo, or standalone project? · package-based
✔ Enable distributed caching to make your CI faster · Yes


Avec cette commande nous avons le projet Nx configuré de base et sans libs pour le moment. Nous allons travailler avec le style Package-Based Repos qui nous offre plus de liberté en limitant le couplage avec Nx si jamais on souhaite changer facilement d'outil de monorepo. Cela permet également d'avoir des node_modules différents pour chaque app ou lib du projet. En savoir plus sur les différents style d'implémentation de Nx.

Création de la lib core

Nous allons maintenant ajouter notre première lib, la plus importante : core. En effet, c'est dans cette lib que nous allons mettre notre Architecture Hexagonale et la logique métier qui sera utilisée par nos applications Web et Mobile.

➜ nx g @nx/js:lib libs/core

✔ Which unit test runner would you like to use? · vitest
✔ Which bundler would you like to use to build the library? Choose 'none' to skip build setup. · rollup

Cette commande nous a généré une lib avec le framework de test Vitest, une config eslint et prettier que l'on peut adapter à nos preferences que je ne détaillerai pas ici.

Il est possible de compiler notre lib avec la commande nx core build et d'executer les tests avec nx core test.

Mise en place de la CI

Maintenant que nous avons les tests setup ainsi que prettier et eslint, il est pertinent de mettre en place une CI pour avoir du feedback régulier sur la bonne tenue du code. Pour la CI nous allons simplement suivre la documentation de Nx et utiliser les GitHub Actions.

Nous allons donc simplement ajouter un fichier .github/workflows/ci.yml assez simple qui peut être étoffé.

name: CI
on:
	push:
	branches:
	- main
	pull_request:

jobs:
	main:
		runs-on: ubuntu-latest
		steps:
			- uses: actions/checkout@v4
				with:
					fetch-depth: 0
			# Cache node_modules
			- uses: actions/setup-node@v3
				with:
					node-version: 20
					cache: 'yarn'
			- run: yarn --no-progress --frozen-lockfile
			- uses: nrwl/nx-set-shas@v4.0.4

			- run: npx nx format:check
			- run: npx nx affected -t lint,test,build --parallel=3

Cette simple CI permet vérifier le bon formatage prettier, d'effectuer les validations eslint et de build et de s'assurer que les tests sont sans erreurs.

Structure du projet

Rentrons plus en détails dans ce que l'on vise comme structure de projet une fois les apps mise en place et notre lib core développée avec l'architecture hexagonale.

- apps

    - mobile : notre application React Native développée avec Expo
    - web
: notre application React développée avec React

- libs
    - ui
: nos composants React et React Native utilisés par les apps web et mobile
    - tailwind
: notre configuration tailwind utilisée par les apps web et mobile ainsi que la lib ui
    - core
: notre architecture hexagonale qui contient le coeur de notre application et toute la logique métier réutilisable par les apps web et mobile

Pour aller plus loin, on peut très bien envisager d'avoir une app en plus pour un Storybook.

La lib qui va nous intéresser et la lib core évidemment. Elle sera structurée de cette manière :

- libs
    - core
         - src
              - wallet
                   - tests
                        - wallet.service.test.ts
: la logique métier testées
                        - wallet.test.ts
: les règles métiers testées
                   - domain
                        - wallet.ts
: l'entité qui représente les portefeuilles et qui contient des règles métiers
                        - wallet.repository.ts
: le contrat qui détermine comment manipuler l'entité pour lister, ajouter, etc.
                        - wallet.service.ts : le service qui consume une implémentation de contrat

                   - infrastructure
                        - in-memory-wallet.repository.ts
: une implémentation du contrat
                        - local-storage-wallet.repository.ts
: idem
                        - supabase-wallet.repository.ts : idem
                   - user-interface
                        - wallet.store.ts :
un store zustand vanilla, utilisable dans n'importe quel environnement javascript et qui sera utilisé dans nos apps
              - category
                   - ...
           - ...

Nous verrons le contenu de chaque fichiers ainsi que les détails du fonctionnement de ces derniers dans le prochain article !

Conclusion

Nous avons terminé le premier article de cette série sur le développement d'une application web et mobile avec l'Architecture Hexagonale et le partage de la logique métier et des composants UI.

Dans cette première partie nous avons vu comment mettre un place un monorepo et nous avons pourquoi et comment ce monorepo va nous aider à partager la logique métier entre nos différentes applications. Nous avons également bien délimité le périmètre et les fonctionnalités attendues pour notre première version, le MVP, de broney.

Enfin, à la fin de cet article nous avons commencé à entrevoir la structure du projet en mettant en évidence l'Architecture Hexagonale, ce sera le thème de la deuxième partie : Développer sans UI avec l'Architecture Hexagonale.

Échangeons
sur votre projet !

Nous contacter

Simulateur

Bienvenue dans le
simulateur d’estimation

Sélectionnez
vos besoins

Sélectionnez un ou plusieurs choix

Définissez les
fonctionnalités

Sélectionnez un ou plusieurs choix

Dernière
étape !

Renseignez votre adresse mail pour recevoir l’estimation !
Obtenez l’estimation
Précédent
Suivant

Bravo ! Vous avez terminé
l’estimation de votre future app !

Vous recevrez dans votre boite mail l’estimation personnalisé. Une estimation vous offre la possibilité de vous projeter dans un budget, vous permettant ainsi de planifier en toute confiance. Néanmoins, chez Yield, nous adoptons une approche agile, prêts à remettre en question et ajuster nos évaluations en fonction de l'évolution de vos besoins et des spécificités de votre projet.
Retour au site
Oops! Something went wrong while submitting the form.